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I. Introduction 

A function optimization problem may be defined as follows: Given 

a real valued function defined on a finite dimensional space, find the 

points of the space at which the function attains its optimum (minimum 

or maximum) values. A direct sear& aZgoritkm for solving such an 

optimization problem is an iterative step-by-step procedure which samples 

a number of points in the space until a point is found which is apparently 

optimum. 

Function optimization problems requiring direct search algorithms 

arise from the general area of the design of optimal control systems 

(Athans and Falb (1966)). The optimal point of view, when applied to 

the control of aerospace vehicles or chemical processing plants, for 

example, involves control systems which perform optimally according to 

some pre-determined criteria of performance. Often the design of such 

systems leads to function optimization problems which cannot be solved 

analytically and therefore necessitate direct search algorithms for their 

solution (Kalman, Falb, Arbib (1969), Lavi and Vogl (1965)). 

In many control applications, however, not enough is known about the 

plant (controlled system) behavior to formulate beforehand a realistic 

optimal control problem. In this case, one may design a control system 

from the adaptive control point of view (Bellman (1959), Mishkin and Braun 

(1961), Feld'baum (1966), Sworder (1966)). An adaptive control system 

attempts to optimize the performance of the plant "on line", i.e., the 

controller attempts continually to improve the plant's performance, its 

actions being based upon its record of past plant responses to control 

inputs and environmental disturbances. An adaptive controller must possess 



as essential subcomponents, direct search algorithms which can direct the 

search toward optimum points of the criterion function (Wilde (1964), 

Hall and Ratz (1967)). 

Thus the successful design of optimal and adaptive control systems 

rests critically on the existence of useful direct search algorithms for 

solving function optimization problems. The value of a direct search 

algorithm in any application depends on its ability in the first place 

to converge (i.e., to actually locate the optimum in a finite time) and 

secondly, to converge rapidZy (many algorithms can be guaranteed to eventually 

locate the optimum but do so much too slowly for practical application). 

Thirdly, it is important that such an algorithm not be misled by random 

variations in the criterion function (arising, for example, by digital 

roundoff error or plant disturbances) into settling on apparent optima 

far removed from the actual ones. 

Genetic algorithms are direct search algorithms which are modelled 

upon search strategies employed in natural adaptation. 

Attempts were made by Fogel, Owens and Walsh (1966) and Bremermann 

(1966) to implement some of the search strategies employed in natural 

adaptation. The techniques employed by these workers only superficially 

resembled those known to exist in nature (Mayr, 1965) and the studies 

did not yield information concerning the comparative convergence properties 

or cost and complexity of the genetic algorithms. More sophisticated 

algorithms employing the mechanisms of crossover, inversion, mutation 

and reproduction at the genotypic level have been developed by Rosenberg 

(1967), Bagley (1967), and Cavicchio (1970). These workers obtained 

experimental results indicating the superiority of the-genetic algorithms 



to competitive methods in the areas of pattern recognition and biochemical 

adaptation which they explored. Holland (1969a,b,c) has undertaken a 

systematic theoretical analysis of these methods. His work concerns the 

existence of an ideal reproductive plan which is "good" in comparison 

to any other plan, i.e., it sustains only a finite loss over infinite 

time when compared to any other plan. This criterion is a formalization 

of the requirements that a search algorithm be "efficient" and "robust" 

over a broad range of test problems. 

Hollstien (1971) developed a class of genetic algorithms for function 

optimization. He has shown that these algorithms are capable of achieving 

convergence on functions which are multipeaked and discontinuous where 

as classical hill climbing methods operate well only on sufficiently smooth 

single peaked functions. 

In this paper we are concerned with the convergence rates of genetic 

algorithms in comparison with other methods. As a beginning, we investigate 

the convergence rates of genetic methods relative to those of the conjugate 

gradient (variable metric) methods (Luenberger (1964), Pearson (1969), 

Polak (1971)) on test problems typical in the latter area. This 

is a severe test for the genetic methods since on the one hand they do not 

employ derivative extraction techniques for guidance (which is available 

from the analytic structure of the usual test function) and on the 

other hand the conjugate gradient methods have been honed to the point of 

extreme efficiency for these functions. Thus from this point of view 

one may expect relatively inferior performance from the genetic methods. 

Some positive indications for performance however arise from studies by 

Rastrigin (1966) and Schumer (1968) which indicate that random step size 

methods can be more efficient than fixed step size gradient methods. Since 

Hollstien claims superior performance for his methods over those of 

3 



Rastrigin this opens the possibility that genetic methods can compete favor- 

ably with the conjugate gradient methods (which are themselves more 

powerful than the fixed step size gradient methods). 

4 
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II. Description of Program 

As work progressed on our optimization program it naturally underwent 

a number of modifications. We shall attempt to portray this evolution 

by describing four stages of development (I,II,III,IV). After the 

description the theoretical and experimental developments which motivated 

these modifications will be discussed. 

We consider maximization of real valued n-ary functions of the form 

f:Rn + R. 

A chromosome (or string) is a list of coordinate values of an 

n-dimensional vector with an associated inversion pattern. An inversion 

pattern is a permutation of the sequence l,...,n say il,...,i . If a n 
string is a 1 ,...,an with inversion pattern i 1 ,...,i n this means that there 

is a point in n-space which corresponds to the string such that its i. th 
I 

coordinate is a.. 
3 

For example, let n=4, and the string be .l, .02, 1.3, 

-.4 with inversion pattern 1,4,2,3 then the corresponding point is (.I, 

1.3, -.4, .02). 

The function va2v.e associated with a string is just the value of the 

function (currently being optimized) at the corresponding point. Thus 

the value associated with the above string is f(.l, 1.3, -.4, .02) (not 

fC.1, .02, 1.3, -.4)). 

Version I 

The basic flow diagram for Version I is as follows: 

5 
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cross-over 

no 

Forty strings were maintained in four subpopuZations of ten strings 

each. Only one inversion pattern was associated with each subpopulation. 

I.e., any two strings in the same subpopulation had the same associated 

inversion pattern. A vector called the utility vector was maintained 

giving the function value of each string. 

Selection consisted of ordering each subpopulation by function value 

(i.e., the best string is the one with the highest function value) and 

then replacing the lowest four strings by the best four strings (in each 

subpopulation). 

Cross-over consisted of picking at random two coordinates for each of the 

two pairs (7,8) (9,lO) of strings in each subpopulation. These are called 

pivot points. Then all coordinate values between and including the pivot points 

are exchanged between pair members. For example suppose we have a pair 

of strings a 1 ,...,a 5 and bl,..., b5 with inversion pattern 1,2,3,4,5 and 

with pivot points 2 and 4 say. The resulting strings are alb2b3b4a5 and 

bla2a3a4b5' 
Inversion consisted of ordering the four subpopulations by their 

best strings, 1 copying the best two subpopulations into the worst two 

subpopulations, and changing the inversion patterns of the copies as 

‘1 In each subpopulation the string with the highest function value is 
found (the best string of the subpopulation) and the subpopulation ' 
with the highest "best string" is best, etc. 



folloWs. To change the inversion patterns, two pivot points were chosen 

for each copy and all strings were inverted about these pivot points, 

I.e., if al,..., a3 is a string of a subpopulation with pivot points 2 and 

4 say, then the new string is ala4a3a2a5. 

Mutation was more complex. A probabitifg vector was included in the 

initial parameter specifications. The vector had four coordinates. Each 

coordinate specified the probability of using a corresponding method of 

mutation on any given string. 

The methods of mutation were: 

1) Fletcher-Reeves (FR) Mutation. A version of the Fletcher-Reeves 

(1960) method which could be applied a controlled number of times q to 

a point (without reinitialization).2 When q=l this reduces to gradient 

mutation, i.e., an approximate gradient was taken at the point specified 

by the string to be mutated and a "Golden Section" one dimensional search 

was made along the line from the point specified by the gradient with limits 

which were initialized. 3 

2) UnifoMn random mutation of coordinates. An integer, the number 

of coordinates to be mutated, was chosen randomly between 1 and n, say m. 

m integers (the actual coordinates to be mutated) lvere chosen randomly 

between 1 and n, say il,...,im. m numbers (the mutation amounts) were 

chosen randomly between initialized limits symmetric about 0, say rl,...,rm. 

Finally rj was added to the i.th coordinate of the point. 
7 

3) Quadratic Gaussian ApproximatZon. m and il,...,im were 

chosen as in 2). 2m numbers were chosen randomly between -1 and 1, say 

rl,l'rl,2'""rm,l~rm,2~ If & is the initialized number determining the 

"standard deviation"of this mutation, then r. 
JXrj,2 

l L is added to the 

i.th coordinate of the point for each j=l,...,j=m. 
1 

2 Since everytime the routine is called its remembered gradient is set to 
0 this is equivalently a reset mode of operation with reset interval q. 

jOur Fletcher-Reeves method uses 2n samples for its gradient estimation and 
30 samples for its one dimensional search per iteration (n is the dimension 
of the space). 7 



4) zero mutation. The string is left unaltered. 

For each of the forty strings one of these four methods of mutation 

was chosen according to the probability vector and applied to the point 

corresponding to the string. The resulting point was converted to a string 

with the same inversion pattern as before and the utility vector was 

updated by applying the function to the point. 

The initiaZization consisted of reading in parameters and initializing 

the strings to random coordinate values between two bounds, say -2 and 2. 

The four inversion patterns were all set to 1,2,3,4...n. The utility vector (function 

value vector) was initialized with the associated function values. All 

other parameters were considered to be subject to experimental manipulation 

and initialized accordingly. 

Version II 

Version I was modified to create Version II in the following ways: 

Selection replaced the worst four strings in each subpopulation with 

four strings from the same subpopulation as follows. The strings are 

rated 1 ,...,lO and 7,8,9 and 10 are replaced. String 7 is replaced by 

string 1. String 8 is replaced by string i where i is (uniform) randomly 

chosen from 2,3,...,10. String 9 is replaced by string 2 unless i=2 in 

which case 9 is replaced by 3. String 10 is replaced by a string chosen 

randomly from those remaining. Thus the best two strings are always 

duplicated by the selection.process. (None of the replacements were made 

until all strings were chosen.) 

Cross-over was done in the same way. Note that the selection now 

caused cross-over to occur between the best strings and randomly chosen 

strings, rather than among the best strings themselves. 

The four mutation methods of I were used except that 2) was altered 
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as follows: 

2') Cubic Gaussian Approximation. rl,...,rm were chosen randomly 

between -1 and 1 then added ri*L to the i,th 
J 

coordinate. 

A fifth method was added: 

5) Uniform Raxdom with VariabZe Limits. This method was like the 

old 2) but the limits between which rl,..., rm were chosen were different 

for different coordinates of the point. Let these limits be 

-l.l,.L1'-L2,.L2,...,-& ,L . Before this mutation was done the maximum and nn 
minimum coordinate values were found for each coordinate, say ai and.ai, 

.th respectively for the 1 coordinate. 4. = a;-a. 1 1** 

Each string was mutated as before, but when the best string in 

each subpopulation was mutated (according to the probability vector), 

the mutant replaced the worst member in the subpopulation (the best string 

was also saved unmutated). _- 

The major addition to the program structure was a second level , 

"adaptation" routine which controlled some of the parameters previously 

fixed at initialization. These parameters included the%tandard deviatiofl' 

L used in methods 3) and Z'), the probability vector (determining the 

disposition toward selecting a particular mutation method). The adaptation 

was based on a history vector which contained information concerning 

how often and when each mutation was used, the average mutation which 

resulted in applying mutations 2') and 3) for each subpopulation, and the 

highest function value present in each subpopulation before mutation. 

The adaptation routine used was similar to that of Schumer and Steiglitz 

(1968). The variance determining parameter L was modified according to 

whether large mutation amounts or small ones proved more fruitful in 

producing increases in the function value. A more complete description 

of this routine is given in Appendix A. 

9 



Version III 

The flow diagram for Version III is as follows: 

I- initialization I 

The major change introduced was that there was no partitioning of the popula- 

tion into four distinct subpopulations. The population size was determined dyn- 

amically but was limited to at most 40. Because separate subpopulations 

each sharing a common inversion pattern were not maintained some convention 

had to be adopted in order to achieve crossover between strings with 

different associated inversion patterns. One possibility, that of 

allowing crossing over only between strings having the same inversion 

pattern was rejected (for the difficulties in this strategy see 

(Bagley (1557)). Instead cross-over was allowed between arbitrary strings 

with the inversion pattern of the better string of the pair determining 

the alleles to be crossed-over. In essence, the heuristic is that the 

inversion pattern of the better string is in fact the better inversion 

pattern. More detail will be given in a moment. 

The mutation routine differed from the previous mutation routines 

in the following ways. A parameter ml (determined by initialization) 

10 



was defined as the number of strings to be mutated. Suppose the program 

began with m strings (m assumed notless than ml), then the ml strings 

which had the highest associated function values among the initial m strings 

were chosen. These ml strings were copied. Each of the ml copies was 

mutated using a method chosen randomly with the probability vector deter- 

mining the frequency of selection of any given mutation method. The mutation 

methods were the same as l), Z), 3) and 2') of Version II. Method 5) 

was not implemented in the Version III mutation routine. (As before, 

the utility vector was updated and the history vector was maintained.) 

The adaptation routine was essentially the same as the adaptation 

routine of Version II (allowing for the differences in the structure 

of the history vector). The major difference was that a weighting scheme 

was introduced to evaluate method effectiveness so that a heavily weighted 

method had to produce a higher percentage difference in the best function 

value than a method not weighted so heavily in order to have the ratio 

of the probabilities of these two methods remain the same. These weights 

were initialized. 

The cross-over routine was altered as follows. Let m2 be the 

initialized parameter indicating the number of strings which the routine 

would operate on. Z-ml (the number of strings leaving the mutation routine) 

was assumed greater than or equal to m 2’ The best m2 strings among the 

Z-ml strings were chosen. Cross-over initiated by copying the strings 

present and pairing the copies randomly. Then the alleles (coordinate 

values) of the string with the higher function value between and including 

the pivot points were exchanged with the corresponding alleles of the 

other string. Equivalently the normal cross-over operation is performed 

11 



except that the inversion pattern of the worse string is replaced by that 

of the better string before the exchange is begun. After the exchange 

one of the daughters receives.the worse string's inversion pattern (the 

other daughter inheriting the better string's pattern). For example, if 

ala2a3a4a5 with pattern 12345 and blb2b3b4b5 with pattern 54321 are to 

be crossed over, first create b5b4b3b2bl with pattern 12345 and do the 

cross-over as usual. With pivot points 2 and 4 for example, we obtain 

alb4b3b2a5 and b a a a b . 52341 One of these is given pattern 12345 while 

the other gets 54321. 

The number of successive cross-overs was not held at one (as before), 

but was determined by an initialized maximum bound i subject to the 

constraint that the process was to be stopped if the population size reached 

40. (Note that the population doubles at each successive cross-over 

and 2' = 32 so i < 5.) 

The inversion routine always produced ml strings. Assuming the 

entering population size exceeded ml the best 'ml/Z' (the least integer 

greater than ml/Z) strings were chosen. Each such string was copied and 

the inversion pattern of the copy was determined by randomly chosen pivot 

points as before. (Production was halted when ml strings were produced.) 

Version IV 

Version IV was exactly the same as Version III except that in the 

mutation routine some of the original ml strings were mutated as well. 

Thus an initialized parameter mi < ml determined that mi randomly chosen 

strings from the original ml strings not including the best were to be 

mutated in the same manner as the ml copies already produced. 

12 



III. Test Functions 

The following functions we used as test functions to be optimized: 

1. Spherical Contours 

fl(X) = “co x2 . 
is1 ' 

2. Index 
40 

f2(x) = C ix: 
i=l 

3. Index squared 

f3(x) = %Oi'xf 
i=l 

4. wood 
22 f4(x) = 100(x2-x1)+(1-x1) 2 

22 + 90(x4-x3) +(1-x3) 2 

+ lO.l((x,-1)2+(x4-1)2) 

+19.8(x2-1)(x4-1) 

5. VaZleys 

fg(x) = Z i2(x5+i-xi)2+ixij 
i=l 

6. Repeated Peaks 

f6 (‘) = (4i~lxi (‘-‘i)) ~+~ xs] -x5)(“5-[ ‘51) ’ xs1 ( ~x5~+1) 

for x. > 0 
1 

i = 1,2,3,4 and x 5z1 

= 0 otherwise4 

Functions 1 through 4 are standard in the direct search literature. 

We invented 5 and 6 to test our hypotheses concerning algorithm behavior. 

4[x] is the integer part of x,' e.g., [1.5] = J. 

13 



NOTE: Functions l-5 are to be minimized so that in the program f(x) 

is replaced by -f(x) and the standard maximization formal is satisfied. 

14 



IV. Comparison of Genetic and Classical Methods 

As stated before, one of our primary objectives was to compare the 

performance of genetic and classical methods in the realm of numerical function 

optimization. We hoped to ascertain in this way whether genetic methods 

could utilize the local structure of analytic functions sufficiently 

well to compete favorably with classical methods which employ gradient 

extraction routines. 

Our approach was to compare the best of our genetic routines constructed 

to date with the Fletcher-Reeves method. Of course the results obtained 

are strictly speaking only relevant to the particular methods compared and 

the means of comparison. However since the latter were selected with 

their role of class representatives in mind we have reason to believe that 

our conclusions may have general validity. 

The experiment consisted of running Version IV against a control 

Version II called FRl in which Fletcher-Reeves is the only mutation method. 

More specifically, FRl had the Version II structure except that the mutation 

routine now had the form: apply the Fletcher-Reeves method with reset 

interval q = n (where n is the number of variables in the function) to 

the best string in each subpopulation. 

Version IV and FRl were applied to each of the test functions 2 through 

5 with the same initial set of points. 

The resuZts are shown in Tables 1 and 2. In Table 1, we record for 

each test function the number of function evaluations taken by FRl each 

time the mutation routine is executed. In comparison the number of 

15 



TABLE 1 

Test Function 

2. Index 

3. Index Square 

4. Wood 656 164 

5. Val 1 eys 2,100 525 

Number of FRl 
Function Evaluations 

per generation 

actual 

17,616 

17,616 

divided by 4 

4,404 

4,404 

Number of Version IV 
Function evaluations needed 

to achieve same change in 
function value 

55,800 15 
11,475 1.46 

90 .12 

19,800 
4,400 
5,500 
3,200 
3,500 
3,500 

45 .8 
45 .3 
45 .189 
45 .292 
45 ,385 
45 .238 

270 .34 
90 .28 
90 .525 
90 .315 

3780 .583 
3240 ,479 

0 .00001 
0 .006 
0 .o 

40,770 1.669 
18,900 .643 

1,566 1.2 
5,220 .71 
1,392 .88 
3,132 1.3 

Corresponding change 
(order of magnitude) 

- 



TABLE 2a 

Test Function 

1. Spherical Contours 

2. Index 

3. Index Squared 

4. Wood 

5. Valleys 

6. Repeated Peaks 

Function 
value attained 

1o-3g 

-1.0 x lo-l5 

-2.0 x 10 -10 

-1.46 x 1O-6 

-3.4 x 10 -9 

11.999 

Number of function 
evaluations 

actua 

110‘ 

52,848 

.05,696 

11,152 

8,400 

m 

'Rl 
divided 
by 4 

13,424 

26,421 

2,790 

2,100 

03 

T Version IV 

52,800 

67,725 

40,000 

68,000 

11,310 

5,070 

*The figure given in the number of function evaluations required by our 
optimum gradient method (Fletcher-Reeves with q = 1) which converged 
in one iteration. 
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TABLE 2b 

Test Function 

2. Index 

3. Index Squared 

4. Wood 

5. Valleys 

Function 
value attained 

1.6 x lo-l9 

1 x 1o-22 

1 x lo-l4 

2.4 x 10 -13 

Number of Function 
evaluations required by 

Version IV after FRl hung up 

86,175 

94,140 

200,000 

93,544 

18 
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function evaluations taken by Version IV to achieve the same change in 

function value is indicated (along with the change in value achieved). 

The function value attributed to a population is that of its best string. 

In Table 2awe record the total number of function evaluations taken 

by the methods to reach the indicated level. 

In these tables we have given both the actual number of FRl function 

evaluations and this number divided by 4. The latter is a lower bound 

on the number of function evaluations were the classical Fletcher-Reeves 

method (i.e., our method in its nonHUform) to be applied to the best point 

in the initial population. 

It may have become apparent to the reader that we face the difficulty 

here of comparing the parallel operating genetic methods with the sequential 

conjugate gradient methods. Our genetic algorithms must start with a number 

of initial points. The Fletcher-Reeves method begins at one point. We 

have observed that the rate of convergence of Fletcher-Reeves may be quite 

variable depending on the nature of the current search region (for example 

whether it is locally quadratic or near a sharp ridge) and the number of 

iterations taken since the last re-initialization. 

Clearly some kind of aggregate behavior of a method over the search 

space is required for meaningful comparison. While parallel methods lend 

themselves more to this form of analysis little is known analytically for 

either type of method in the present context. Then too which aggregate is 

to be used: the maximum rate of convergence? the average? the minimum? 

What if a method fails to converge from some starting points but converges 

rapidly from others? 

19 



As already indicated, our decision was to embed the Fletcher-Reeves 

method in a Version II genetic program. If we ignore the effects of cross- 

over: this is equivalent to applying Fletcher-Reeves to the best point in each 

of the 4 subpopulations, the number of function evaluations required to 

reach a given function value level being then four times the number required 

by Fletcher-Reeves applied to the point which reaches this level first. 

knowing before hand which of the four initial points would actually reach 

this level first we would need only l/4 of the total. Thus the "divided 

by four" columns of Tables 1 and 2a represent an "optimistic" estimate of 

Fletcher-Reeves efficiency. This optimism will be well founded if the var- 

iability of convergence is low (so that knowing which starting point is 

ultimately best is unimportant) and inappropriate if the variability is in 

fact high in which case the "pessimistic" upper bound is justified. 

Our results indicate that except for the behavior on the spherical 

contours, Wood and Repeated Peaks function there is not a vast difference 

in convergence rates. 

The behavior on the spherical contours functions points out Version 

IV's lack of gradient extraction facilities. On this function, Fletcher-Reeves 

(or just optimum gradient) can follow a one-dimension search in the gradient 

direction directly to the optimum. 

The Wood function results indicated that Version IV is not a very 

good ridge follower. (Its initial progress is comparable to FRl but it 

seems to get hung up in mid course though its mutation facilitates enable 

it to make a recovery). 

Repeated Peaks is a multiple peak function and thus should be beyond 

the abilities on any local hill climbing method. This is substantiated 

in the fact that FRl hangs up on the local peak on which it is initiated. 

5Actually our observations indicate that crossover has little effect in 
the FRl context. 
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Of course for the comparison here to be truly meaningful a global search 

level should be superposed above the Fletcher-Reeves local search. 

The conclusion that convergence rates are comparable on Functions 

2 through 5 should be discussed in view of some results of Rastrigin (1963), 

Schumer and Steiglitz (1968) and Hollstien (1971). The first two references 

show that on functions of type 1 through 3 a random directional step 

method can be significantly more efficient than a gradient method with 

step size fixed at the same value. Hollstien claims superior convergence 

for his genetic algorithms over the random directional methods. 

It follows then that Hollstien's genetic algorithms outperform the 

gradient methods with fixed step size. 

It is crucial here to note that the gradient methods referred to by 

Rastrigin are of the fixed step size type and not of the conjugate gradient 

class which we considered. The efficiency of the latter conjugate gradient 

methods (of which Fletcher-Reeves is a good representative6) is known 

to a exceed that of the fixed step gradient.7 Thus the question remains 

open as to how the random direction methods compare with the conjugate 

gradient methods and hence how Hollstien's genetic methods compare with 

the gradient methods. Our present results thus add essentially new infor- 

mation to this comparison. 

61n a comparison of 7 conjugate gradient methods including the well-known 
ones, Pearson's (1969) results show that in terms of the number of 
one-dimensional searches, Fletcher-Reeves is superior to all others 
(except Newton Raphson) when operated in the reset mode (as it is here) 
on the Rosenbrock and Wood functions. Thus we chose Fletcher-Reeves since 
it is both more simple and efficient on the "well-behaved" functions we 
considered. (On the "penalty functions" considered by Pearson the situation 
is drastically reversed with Pearson's method #3 coming out well on top.) 

7This can be seen in any of the texts referred to in the literature survey 
and is essentially due to the use of one-dimensional rather than the 
much more costly n-dimensional searches. 
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Actually, Schumer compares his method with Newton Raphson on 
n2 C xi 

i=l 
(our function 1) and ? x4 and finds it inferior on the former for 

i=l 

n < 78 and superior on the latter for n > 2. The comparison is in terms 

of the number of function evaluations and it appears that Schumer's method 

increases linearly while Newton Raphson increases quadratically in this 

regard (essentially because second partial derivatives must be estimated). 

As we have indicated the function evaluations per iteration required by 

Fletcher-Reeves increase only linearly in dimension and on the : x2 and . 
i=l l 

n4 C functions it should far surpass Newton Raphson in this measure. 
i=l 

xi 

In fact, Table 2a shows that our Fletcher-Reeves requires only 110 

samples compared to the 330 required by Schumer's method and the 1500 required 

by Newton Raphsonl (Data taken from Schumer's Figure 4). Thus the 

classical Fletcher-Reeves should be uniformly better than Schumer's method 

on Spherical Contours for any finite dimension. 

It is interesting also that Schumer's method proved not very effective 

as a ridge follower as indicated by its inferior performance on Rosenbrock's 

function. 

It should be noted that Version IV'was able to reach much lower function 

value levels than was FRl. This is shown in Table 2b which gives Version IV's 

behavior starting from the levels indicated in Table 2a. The latter levels 

are those for which FRl's progress terminated. (This may be an artifact of 

our Fletcher-Reeves realization.) 

lActually the difference is-53 en more striking when it is considered that 
Fletcher-Reeves reached 10 from point (2,2,. ..,2), while Schumer's data 
are for the level 10-8 starting from (l,l,...,l). Note that Version IV's 
performance fell in between the Schumer and Newton Raphson methods. 
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V. Evolution from Version I to Version IV 

5.1 Mutation and Second Level Adaptation Routines 

Initially, only mutation method 1) was used. It involved a uniform 

random selection of coordinates (loci) and values (alleles). Methods 

3), 2') and 5) were introduced in order to bias the distribution toward 

small changes. This improved convergence by helping the system move 

off false resolution ridges (Wilde, 1965). Later we discovered that 

adding a second level routine (Version II) to modify the biasing on the 

basis of past experience considerably improved performance. Table 3a 

indicates the effectiveness of the adaptation routine. Our analysis of the 

reasons for the improvement obtained is as follows. 

As a run progresses the best alleles must be changed less in order 

to improve. For this reason, the standard deviation of a random mutation 

must decrease in order to improve the probability of a better mutation. 

To this end we implemented some history vectors and added a program to 

adapt the mutation parameters in a Bayesian approximation. Thus, if a 

smaller mutation had worked best, the standard deviation was decreased 

and like-wise for a larger mutation. If there has been no improvement 

in function value over the period of history the standard deviation was 

halved assuming that it had been too large. When the parameters became 

too small for the accuracy of the machine, they were reset to maximal 

values. 

It was apparent that the kind of mutation which worked best at 

one point in a run was sometimes different for a different part of the run. 

For this reason more history was kept and the probabilities of the differ- 

ent mutation methods were changed. This seems to work but does not usually 

give marked improvement in the performance of the system. 
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Non-uniform distributions worked better than uniform ones when no 

adaptation was applied since there was a higher probability of small 

change. 

With the adaptation, uniform works best under certain conditions 

since the probability of making the right size change is higher and adap- 

tation can progress faster. Under different conditions the uniform is 

more likely to put the adaptation parameter in a "quasi-stable" state 

where change is quite smooth but too slow to be useful. 

By a "quasi-stable" state we mean a situation in which the adjusted 

parameter is maintained for a long period of time at a suboptimal value. 

This can happen in our present system since we include no random or 

regular reset. Resetting of the parameter occurs only when it has passed 

below a preset limit. Thus a situation in which the parameter is not 

below the preset level but is still too small to cause significant changes 

in the function values of mutated points will result in "quasi-stable" 

state since the information fed back to the adaptive routine is insufficient 

to cause a directed change in the parameter setting. 

We tested the more complicated variable limit mutation (5) against 

the simpler quadratic mutation (2). Table 3b indicates that 5) was indeed 

better than 2) on the two functions shown. However, used with the additional 

adaptation routine the extra variability of 5) was redundant in view 

of the adaptive flexibility (i.e., controllable variability) introduced 

by the latter (adaptation) routine. 

We were interested in the extent to which gradjent information could 

be encorporated into the genetic algorithm structure. Employing Fletcher- 

Reeves as a mutation routine does not give much of an answer to this 

question since on the test functions employed it tends to speed up con- 

vergence to such an extent that the essential genetic elements (cross-over 
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TABLE 3a 

Number of function evaluations required by Version I V.S. Version II. 

(All parameters are set to the same values except that Verstion II employs 

a second level adaptation routine). 

Function 

1. Spherical 
contours 

Value 
Attained Version I Version II 

-2.045E+l* 90 90 
-5.28 900 1050 
-3.78 1350 1175 
-2.97 2250 1350 
-2.48 2700 i440 
-1.80 4400 1440 
-1.36 5500 1525 
-1.26 5840 1620 
-1.00 10,750 1700 
- .753 13,400 1890 
- .472 14,400 2150 
- .268 17,820 2700 
- .218 28,600 2790 
- .217 >38,300 2790 

*aEb is Fortran for a x lob 
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TABLE 3b 

The number of generations required by Version II using quadratic 

mutation (2) V.S. variable limit mutation (5). 

Function 

2. Index 

4. Wood 

Value 
Attained (21 (5) 

-700 10 20 
-400 15 50 
-300 36 70 
-200 75 110 
-100 190 170 
- 80 260 190 
- 60 310 220 
- 40 550 260 
- 20 >4200 470 

- 15.0 7 
- 10.0 9 
- 9.0 10 
- 4.0 12 
- 2.0 15 
- 1.0 46 

.5 60 

.l >700 

.Ol >700 

10 

20 
40 
60 
70 
80 

170 
370 
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TABLE 3c 

The number of generations required by Version II using a pure gradient 

mutation (1) V.S. a mixed strategy using 1) with probability 3/4 and 

quadratic random (3) with probability l/4.* 

Function 

3. Index 
squared 

Value 
Attained 

-100 
- 10 

: 6" 
- 5 

1 

9 
34 

l---- 
43 
55 
64 

3/4(1)+1/4(3) 

10 
34 
35 
41 
45 

*Note that 1) also uses more function evaluations per generation 
than does 3/4(1)+1/4(3). 
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TABLE 3d 

The number of generations required by version I with "best saved" 

strategy versus "best not saved." 

Function 

3. Index Squared 

Value Attained Best Saved Best not Saved 

-.198E5 10 10 

-.llE5 20 30 

-.7E4 40 50 

-.5E4 50 90 

-.4E4 70 120 

-.3E4 90 160 

-:2E4 110 310 

-.lE4 190 '4700 
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and inversion) do not play much of a role. However when we used gradient 

mutation (i.e., Fletcher-Reeves with q = 1) we found that it worked 

better in conjunction with random mutation than alone (see Table 3~). 

It was apparent that the mutation often changed the best string in 

a given population for the worse. When we saved the best string in each 

subpopulation by replacing the worst string with the mutation results 

from the best string, the performance was increased several fold. (Table 3d). 

5.2 Inversion and Crossover 

We called the Version I kind of cross-over best-with-best because 

cross-over only occurred between the best strings in each subpopulation. 

Since mutation can cause good alleles (coordinate values) to appear in 

a string and still make the string bad by making some alleles bad, 

best with best cross-over does not use all its potential. For this 

intuitive reason and other reasons based on our theoretical concept of 

crossover we tried crossing over the best strings with randomly selected 

strings so that only part of the time are the best strings crossed over 

with each other (see the description of Version II). This improved 

performance considerably as shown in Table 4. 

We examined the effectiveness of crossover and inversion where no 

mutation routines were used. Here one expects that the ultimate function 

value level attained is governed by the alleles present in the initial 

population (since none can be introduced by the mutation) so the real 

test is whether crossover and inversion can operate to select the best 

alleles of those available. That this is possible is indicated in Table 

5, where the alleles in the final population are no worse than the second 

best of those initially available. 

We also tested the effectiveness of crossover in bringing together 
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TABLE 4 

The number of generations required to reachindicated level by 

crossing over best with best (BB) V.S. best with random (BR).* 

Function 

1. Spherical 
contours 

3 . . Index 
squared 

4. Wood 
function 

Function 
value attained BB BR 

-500 10 6 
-400 19 15 
-300 48 36 
-200 190 75 
-100 >400 190 

-10,000 16 16 
- 8,000 30 22 
- 6,000 50 34 
- 4,000 108 75 
- 2,000 >2700 200 

-15 2 7 
-10 9 9 
- 9 21 10 
-4 32 12 
-2 >600 15 

*Version I using mutation 2) (uniform random) 
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TABLE 5 

The effectiveness of Verison IV with no mutation and 1 crossover 

per generation. 

I The two smallest* values of 
alleles in 1st four co-or- 
dinates available in initial 

Function population 

2. Index 1 2 

. 3835 .0488 

-.6048 .0976 

After generation 12 only 
one string remained: 

1 2 3 4 

-.6048 .0488 .1774 .1181 

*Clearly, for the index function, the smallest are the best. 
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"good" alleles in another way. Table 6 shows that Version IV without a 

crossover routine was unable to achieve the ultimate performance of 

Version IV using 2 crossovers per generation. 

The effectiveness of inversion was similarly tested (Table 7). 

5.3 Comparison of Versions II and III 

The motivation for constructing the version III system was as follows: 

It seemed probable that a lot of "excess baggageIf was being carried 

along in the four subpopulations with the result that more function evalua- 

tions were being used than was necessary. However, were we to reduce 

the nwnber of subpopulations to two or three, only two.inversion patterns 

would be compared in general. Thus on a function some of whose variables 

are linked, inversion patterns would not be tested rapidly enough to 

improve the effectiveness of cross-over. On the other hand, if the size 

of the subpopulations were reduced to say five or six strings each, cross- 

over would have been less effect. Thus it appeared that one must do 

without subpopulations to achieve the smaller sized (total) population. 

But subpopulations were maintained primarily to preserve a single 

inversion pattern. Comparing of subpopulations was thus a test of the 

effectiveness of inversion patterns. How can this be achieved without 

subpopulations? 

Doing away with subpopulations also forces the question: What 

strings will be crossed over and how? Suppose that only strings having 

the same inversion pattern may be crossed over.Suppose the function has 

n variables. Then there are n!/2 essentially different inversion pat- 

terns since any permutation of the variables is an inversion pattern, 

but turning any inversion pattern end for end preserves clumpings. This 

means that for functions with more than three or four variables cross-over 

%.e., redundant information 
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TABLE 6 

Number of function evaluations required by Version IV with and without 

crossover (all other parameters fixed). 

Function 

2. Index 

Value Attained 

-6.03E2 

-3.4E2 

-1.65B2 

-6.87El 

-2.05El 

-8.07EO 

-3.19Eo 

-.9.99El 

-5.82E-1 

-3.59E-1 

-2.68~-1 

-l.BOE-1 

-7.7E-2 

-4.9E-2 

Without Crossover With Crossover* 

75 225 

750 450 

1500 1125 

2250 2475 

3000 4500 

4500 6750 

6000 8100 

7500 10,080 

9000 10,800 

10,500 11,210 

12,000 11,700 

15,000 12,150 

22,500 13,300 

30,000 13,300 

*using 2 consecutive crossovers 
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TABLE 7 

Number of generations required by Version I with and without 

inversion (all other parameters fixed). 

Function 

5. Valleys 

Value Attained No Inversion Inversion 

6.7 10 10 
4.5 30 30 
4.0 40 30 
3.0 60 50 
2.2 90 60 
2.0 150 70 
1.5 170 100 
1.3 260 140 
1.0 380 150 

.9 440 340 

.7 520 360 

.6 570 360 
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would take place very seldom in a set of strings which have individual 

inversion patterns. Therefore a more general kind of cross-over must be 

employed. As already indicated, we tried crossing over two strings with 

different inversion patterns by picking two pivot points as before but 

applying the pivot points to the string with the better function value 

and simply exchanging the alleles involved with the corresponding alleles 

of the worse string no matter where those alleles are in the string. 

This kind of cross-over allows unrestricted cross-over with only a 

slight computing cost to find the "corresponding alleles". It asswnes 

that the string with the better function vaZue usuaZZy has the better 

inversion pattern. That is, that the inversion pattern clumps the right 

variables. Although this type of cross-over is only slightly different 

from the first, its consequences are more difficult to predict. It seems 

to be about half as effective at finding the best inversion pattern. 

The results obtained from the version III and IV systems are often 

uncertain because they have more than a dozen parameters. The purpose 

of having open so many parameters was that we wished to be able to test 

hypotheses which we had formulated as a result of our experience with 

the version II system. These parameters have proved to be quite inter- 

dependent. That is, we find that for any reasonable setting of all but 

one parameters, (that one being arbitrary), varying the single parameter 

has a strong effect on the efficiency of the system. However, having 

found the optimal value for that parameter with the others fixed, 

changing some of the other parameters frequently changes the optimal 

value for the.one parameter by a.large amount. An important project 

for the future will be to chart the interrelations involved. 

However we were able to show that there were settings of Version III 

parameters which yielded performance much superior to Version II (Table 8) 
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TABLE 8 

The number of function evaluations required to reach indicated function 

value by Version II V.S. Version III. 

Function 
Value 

Attained Version II Version III 

3. Index 8000 630 180 
Squared 4700 1,260 440 

3200 2,520 630 
2200 2,835 1,080 
950 4,400 1,710 
700 5,350 1,800 
500 7,550 2,250 
200 13,200 3,150 
80 18,300 3,780 
40 21,400 4,590 
10 34,300 6,930 
7 35,900 9,000 
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thus justifying the change in system structure. 

VI. Conclusions 

If the reader finds himself unable to formulate a clear statement of 

the results of our work to date, let us assure you that we feel ourselves to be 

in the same position. We have constructed a class of algorithms which 

are sufficiently complex to be highly interesting, but which at the same 

time are not readily amenable to analytical study and classification? 

Thus, without the benefit of theoretical guidance we are reduced to stab in 

the dark experimentation. Moreover, since a single optimization run 

takes hours to complete our rate of progress in obtaining data is 

not as fast as our enthusiasm demands. 

Within these cmstraints however, we have obtained suggestive results 

concerning the comparative behavior of genetic and conjugate gradient 

algorithms, and we have also come to some conclusions concerning the 

effectiveness of various subcomponents of the genetic algorithms. 

We have for example demonstrated optimization problems where encorporating 

individually the crossover and inversion operators actually does achieve 

a significant improvement in the rate of convergence (Tables 5,6,7). 

Clearly much remains to be done in confirming or disconfirming these con- 

clusions. 

9 We look forward to a forthcoming book by J.H. Holland on adaptive systems 
for possible help in this direction. Also some preliminary analysis will 
appear in our Report (Foo and Bosworth, 1972). 
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APPENDIX 

The following is a more mathematical description of the adaptation 

used. 

Let fi denote the function value of the best string (the one with the 

highest function value) just before the ith mutation following the last 

adaptation. Let f' denote the function value of the best string just before 

the mutation which occurred just before the last adaptation. In the case 

of the version I system i has values between 1 and ten. i has values between 

one and an initialized integer, say i 0' in the case of the version II 

system. Let i. denote i. for version II and ten for version I. Let 
fi-fi 1 

- di= f 
f1-f' 

i-l 
for i=2,...,io and dl = f' . di is the percentage difference 

in best function value between generations i-l and i. Let wi = di(i+l)/2. 

In the case of subpopulations, each has its own best string and its 

own average mutation for each generation. This requires double subscripting. 

To avoid this we will only consider the version II system. The same methods 

are used and an exact understanding of the version I system may be gained 

from the program listings. Let ai denote the average of all mutations 

used in the ith generation following the last adaptation. Let a' ccrres>ond 

to f'. 10 The theoretical average of the ai over an infinite number of trials 

loWhen a string is mutated using one of the methods which use the adaptation 
parameter k?, a random number of coordinates are chosen to be mutated, sayth 
i (1 2 i < n). If the "cubic" mutation is used an r. is chosen for the j 
coordinate if it is to be mutated where r. E [-l,l]. 

3 The absolute values, 
Ir.1, of these i numbers are averaged, 
thJ string mutated was the kth 

thJ average being say bk where 
string to be mutated that generation. If 

the "quadratic" mutation is used an r . and an r 
coordinate if it is to be mutated whe% r 

are chosen for the jth 
E 

the average be& b 
2*i numbers 
string mutated 

Let ai denote the average o !2 all the bk in the ith 
generation. 
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is .5 since the ri and r.. 
Jl 

have absolute values uniformly distributed 

between 0 and 1. Let a* and a* denote respectively the maximum and minimum 

of the a i's including a' excluding ai . 
0 

If 1' is greater than 4-e. 1 is replaced by $1. If l' is less than 

$4, L is replaced by i-1. If $L I &' I $l, k? is replaced by C'. If the 

new t was less than an initialized constant, .4? was reset to the value & was 

initialized to. The $ limit in the change of 1 is arbitrary obviously. The 

above is a Bayesian approximation based on the assumption that the amount 

of usable information stored in the history vector pertaining to the effect 

of a generation of mutation on generations following the next one is negligible. 

This same assumption is made when adapting the probability vector. 

Let p be the probability of the mutation method under consideration (found 

from the probability vector). If p is 0 the method was not used so go to 

the next method. Let ki be the number of strings to which the method was 

applied correspond to the ai (from adapting e). Let k' be the number just 

before the last adaptation (like a' and f'). If m strings were mutated 

each generation, over an infinite number of trials the ki should average 

p.m. Thus let 

p’ I 

(I 

@:wi+Cki)+ -ial] _ p.m . p,1o + p 

iO 
c wi i=l I ) 
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p could be changed by no more than one tenth in the same manner as .& could 

be changed by no more than one half. Therefore p was normally set to p'. 

The probabilities in the vector had upper and lower limits as to numerical 

size. The "probabilities" in the probability vector were not normalized. 

You can easily see that this has no effect on the above computations since 

the p used there is a true probability derived from the probability vector. 

The limits on the vector were programmed so that no value in the probability 

vector could be greater than 20.0 or less than 0.5 or 0.1 in the version I 

or version II systems respectively. 
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